Get Answers to all your Questions

header-bg qa

If a variable circle passing through the points P, Q, R on the parabola \mathrm{y^2=4 a x}, whose normals are concurrent at \mathrm{(\alpha, \beta)}. The circle also passes through vertex of the parabola. Find out the centre of this circle.

 

Option: 1

\mathrm{\left(\frac{\alpha+2 a}{2}, \frac{\beta}{4}\right)}


Option: 2

\mathrm{\left(\frac{\alpha-2 a}{2}, \beta / 4\right)}


Option: 3

\mathrm{(\alpha+2 a, \beta)}


Option: 4

\mathrm{(\alpha-2 a, \beta / 2)}


Answers (1)

best_answer

Let the circle  \mathrm{x^2+y^2+2 g x+2 f y+c=0}        …(i)

\mathrm{y^2=4 a x}                                                                       …(ii)   

If we eliminate x from (i), (ii), we get

\mathrm{\frac{y^4}{16 a^2}+y^2+\frac{2 g y^2}{4 a}+2 f y+c=0}

\mathrm{\text { or } \quad y^4+\left(16 a^2+8 a g\right) y^2+32 a^2 f y+16 a^2 c=0}        …(iii)   

Roots of (iii) will give ordinates of points of intersection of (i) and (ii). If \mathrm{y_1, y_2, y_3, y_4} be its roots, then

\mathrm{y1 + y2 + y3 + y4 = 0}                                                    …(1)

\mathrm{y1 y2 + y1 y3 + } …….\mathrm{+ y3 y4 = 16a2 + 8ag }                …(2)

\mathrm{y1 y2 y3 + y1 y2 y4 + y1 y3 y4 + y2 y3 y4 =-32a2f} …(3)

\mathrm{y1 y2 y3 y4 = 16a2c}                                                        …(4)

Since normals at P, Q, R are concurrent so \mathrm{y_1+y_2+y_3=0}

\mathrm{y_4=0 \text { by (i) }}

\mathrm{x_4=0} , so circle always passes through (0, 0), which is vertex of the parabola. 

Now if normals passing through (α, β) we have 

  \mathrm{ y1 + y2 + y3 = 0}                             …(4)

\mathrm{ y1 y2 + y2 y3 + y3 y4 = 4a(2a -\alpha )}      ...(5)

           \mathrm{ y1 y2 y3 = 8a2\ss }                …(6)

Put y4 = 0 in (2) and equate with (5),

\mathrm{ \begin{aligned} & 16 a^2+8 a g=4 a(2 a-a) \\ & \Rightarrow \quad 2 g=-(a+2 a) \\ & \end{aligned} }

Put y4 = 0 in (3) and equate with (6)

\mathrm{ \begin{aligned} -32 a^2 f & =8 a^2 \beta \\ \Rightarrow \quad 2 f & =-\beta / 2 \end{aligned} }

So equation of circle is \mathrm{ x^2+y^2-(a+2 a) x-\frac{\beta}{2} y=0 }

 

 

 

 

 

 

 

 

 

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE