Get Answers to all your Questions

header-bg qa

If  1,2,3.... are first terms  :\:1,3,5..........  are common differences  and S_{1},S_{2},S_{3}......... are sums of  n terms of given  p\:\:AP's\:\:; then   S_{1}+S_{2}+S_{3}+.....+S_{p}  is equal to

Option: 1

\frac{np(np+1)}{2}


Option: 2

\frac{n(np+1)}{2}


Option: 3

\frac{np(p+1)}{2}


Option: 4

\frac{np(np-1)}{2}


Answers (1)

best_answer

 

Sum of n terms of an AP -

S_{n}= \frac{n}{2}\left [ 2a +\left ( n-1 \right )d\right ]

 

and

Sum of n terms of an AP

 

S_{n}= \frac{n}{2}\left [ a+l\right ]

- wherein

a\rightarrow first term

d\rightarrow common difference

n\rightarrow number of terms

 

 

S_{1}+S_{2}+S_{3}+......S_{p}

\Rightarrow S_{1}=\frac{n}{2}\left [ 2.1+(n-1) 1\right ]

      S_{2}=\frac{n}{2}\left [ 2.2+(n-1) 3\right ]

       S_{3}=\frac{n}{2}\left [ 2.3+(n-1) 5\right ]

       S_{p}=\frac{n}{2}\left [ 2.p+(n-1) (2p-1)\right ]

so 

S_{1}+S_{2}+.....S_{p}=\frac{n}{2}\left [ 2(1+2+........p)+(n-1)(1+3+5+.......(2p-1)) \right ]

=\frac{n}{2}\left [ 2.\frac{p(p+1)}{2}+(n-1)p^{2} \right ]=\frac{np}{2}(n\:p+1)

 

   

 

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE