Get Answers to all your Questions

header-bg qa

If  \mathrm{\alpha, \beta, \gamma, \delta} are the roots of the equation  \mathrm{x^{4}+x^{3}+x^{2}+x+1=0}, then  \mathrm{\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021}} is equal to :

Option: 1

-4


Option: 2

-1


Option: 3

1


Option: 4

4


Answers (1)

best_answer

\mathrm{\text {Let } x^{4}+x^{3}+x^{2}+x-1=0 }\\

\mathrm{\frac{x^{5}-1}{x-1}=0 \quad(x \neq 1) }\\

\mathrm{x^{5}-1=0} \\

\mathrm{x=(1)^{1 / 5}} \\

\mathrm{x=(\cos 2 r \pi+i \sin 2 r \pi)^{1 / 5}} \\

\mathrm{x=\cos \frac{2 r \pi}{5}+i \sin \frac{2 r \pi}{5}}

Putting \mathrm{r=0,1,2,3,4} the five roots are given by

\mathrm{\cos 0+i \sin 0=1, \quad \alpha=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}}\\

\mathrm{\beta=\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}, \gamma=\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}}\\

\mathrm{\delta=\cos \frac{\theta \pi}{5}+i \sin \frac{8 \pi}{5}}\\

\mathrm{\text { then } \alpha^{2021}+\beta^{2021}+y^{2021}+ \delta^{2021}=\alpha+\beta+\gamma +\delta\\

                                                                =-1

using De-morves's theroem

\mathrm{(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta}

hence correct option is 2

 

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE