Get Answers to all your Questions

header-bg qa

If \mathrm{n} arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1: 7 and \mathrm{a}+\mathrm{n}=33, then the value of \mathrm{n} is :

Option: 1

21


Option: 2

22


Option: 3

23


Option: 4

24


Answers (1)

best_answer

Let common difference of the AP obtained be d.

\mathrm{\therefore\: First\: A M=a+d}\\

\mathrm{Last \: mean =100-d}\\

\mathrm{Their \: ratio =\frac{a+d}{100-d}=\frac{1}{7} \Rightarrow 7 a+8 d=100}         ..........(i)

\text { Also } \mathrm{100=a+(n+2-1) d} \\

\mathrm{\Rightarrow 100=a+(n+1) d} \\

\mathrm{\Rightarrow 100=33-n+(n+1) d \quad(\text { given } a+n=33)} \\

\mathrm{\Rightarrow d=\frac{n+67}{n+1} }

Using (i)

\mathrm{ 7(33-n)+\frac{8(n+67)}{n+1}=100} \\

\mathrm{\Rightarrow 7 n^{2}-132 n-667=0} \\

\mathrm{\Rightarrow n=23 }

Hence the correct option is 3.

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE