Get Answers to all your Questions

header-bg qa

If f be twice differentiable function such that f^{\prime \prime}(x)<0 \forall x \in R, then h(x)=f\left(\sin ^2 x\right)+f\left(\cos ^2 x\right) where |x| \leq \frac{\pi}{2}, increases in

Option: 1

\left[0, \frac{\pi}{4}\right]


Option: 2

\left[\frac{\pi}{4}, \frac{\pi}{2}\right]


Option: 3

\left[-\frac{\pi}{2}, 0\right]


Option: 4

None of these


Answers (1)

best_answer

h^{\prime}(x)=\sin 2 x\left[f^{\prime}\left(\sin ^2 x\right)-f^{\prime}\left(\cos ^2 x\right)\right]

\Rightarrow x=0, \frac{\pi}{4},-\frac{\pi}{4},-\frac{\pi}{2}, \frac{\pi}{2} \\
\sin ^2 x=\cos ^2 x \Rightarrow \tan ^2 x=1 \Rightarrow x= \pm \frac{\pi}{4}

When 0 \leq x \leq \frac{\pi}{4} \\

           \sin 2 x \geq 0 \\

           \sin ^2 x<\cos ^2 x \\

\Rightarrow f^{\prime}\left(\sin ^2 x\right)>f^{\prime}\left(\cos ^2 x\right) ( since f^{\prime} is decreasing function)
h^{\prime}(x) \geq 0 \quad\left[0, \frac{\pi}{4}\right] \text {. } \\

Posted by

Gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE