Get Answers to all your Questions

header-bg qa

If 1, \log_{9}\left ( 3^{1-x}+2 \right ), \log_{3}\left ( 4.3^{x}-1 \right ) are in A.P. then x equals:

Option: 1

\log _{3}4


Option: 2

1-\log _{3}4


Option: 3

1-\log _{4}3


Option: 4

\log _{4}3


Answers (1)

best_answer

As we have learnt, 

If a, b, c are in AP, then 2b = a + c

 

Now,

 If 1, \log_{9}\left ( 3^{1-x}+2 \right ), \log_{3}\left ( 4.3^{x}-1 \right ) are in AP

so,

2\log_{9}\left ( 3^{1-x}+2 \right )= 1+ \log_{3}\left ( 4.3^{x} - 1\right )

                                    = \log_{3}3+\log_{3}\left ( 4.3^{x} -1\right )

\log_{3}\left ( 3^{1-x}+ 2 \right )= \log_{3}3\times \left ( 4.3^{x} -1\right )\;\;\; \left [ \because 2\log_{9}P = {\log_{9^{1/2}}P}=\log_{3}P \right ]

3^{1-x}+2= 12.3^{x}-3

\Rightarrow \frac{3}{3^{x}}+2 = 12.3^{x}-3

\Rightarrow \frac{3}{y}= 12y -5

\Rightarrow 3 = 12y^{2}- 5y

\Rightarrow 12y^{2} - 5y - 3= 0

\Rightarrow 12y^{2} - 9y + 4y - 3 = 0

\Rightarrow 3y\left [ 4y-3 \right ]+ 1\left [ 4y-0 \right ]=0

\therefore y= -\frac{1}{3} and \ y= \frac{3}{4}

\therefore 3^{x}= \frac{3}{4}

x=\log_{3}{\frac{3}{4}}

x= \log _{3}{3}- \log_{3}{4}=1-\log_{3}{4}

Posted by

Sayak

View full answer