Get Answers to all your Questions

header-bg qa

If    \lim _{x \rightarrow 2} \frac{x^n-2^n}{x-2}=80    where n is a positive integer, then

Option: 1

0


Option: 2

2


Option: 3

5


Option: 4

None of these


Answers (1)

best_answer

Given,   

\lim _{x \rightarrow 2} \frac{x^n-2^n}{x-2}=80

By binomial theorem 

\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}=n \cdot a^{n-1}

Now L.H.S =\lim _{x \rightarrow 2} \frac{x^n-2^n}{x-2}=n .2^{n-1}

Then n .2^{n-1}=80

By taking n values  from options                  

a)     For n=3

      3.2^{3-1}=3.2^2=3(4)=12

b)     For n=2

      2.2^{2-1}=2.2^1=2(2)=4

c)     For n=5

      5.2^{5-1}=5.2^4=5(16)=80

So, for n=5

 {\lim _{x \rightarrow 2} \frac{x^n-2^n}{x-2}=80}

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE