Get Answers to all your Questions

header-bg qa

If the line \mathrm{y=4+kx,k> 0}, is the tangent to the parabola \mathrm{y=x-x^{2}} at the point \mathrm{P} and \mathrm{V} is the vertex of the parabola,then the slope of the line through \mathrm{P} and \mathrm{V} is :

Option: 1

\frac{3}{2}


Option: 2

\frac{26}{9}


Option: 3

\frac{5}{2}


Option: 4

\frac{23}{6}


Answers (1)

best_answer

\mathrm{y=k x+4 }\\

\mathrm{y=x-x^{2}} \\

\mathrm{k x+4=x-x^{2}} \\  .......(1)

\mathrm{x^{2}+(k-1) x+4=0} \\

\mathrm{(k-1)^{2}-4 \cdot 4=0} \\

\mathrm{k-1=\pm 4 }\\

if \mathrm{ k=5}

Now put the value of \mathrm{ k=5}

\mathrm{5 x+4=x-x^{2}}

\mathrm{x^{2}+4 x+4=0} \\

\mathrm{(x+2)^{2}=0} \\

\mathrm{x=-2} \\

\mathrm {y=-6} \\

if  \mathrm{k=-3}

Now put the value of \mathrm{k=-3} in eqn (1)

\mathrm{-3 x+4=x-x^{2}}\\

\mathrm{x^{2}-4 x+4=0}\\

\mathrm{x=2 \quad y=-2}

Then the point of \mathrm{P} is \mathrm{\left ( 2,-2 \right )} and \mathrm{\left ( -2,-6 \right )} and vertex of parabola \mathrm{'O'=y-\frac{1}{4}=-\frac{1}{4}+x-x^{2}}

\mathrm{y-\frac{1}{4}=-\left ( x-\frac{1}{2} \right )^{2}}

Point \mathrm{P} is \mathrm{\left ( 2,2 \right )}

 Slope of   \mathrm{OP=\frac{-2-\frac{1}{4}}{2-\frac{1}{2}}=\frac{-3}{2}}

Point \mathrm{P} is \mathrm{\left ( -2,-6 \right )} slope of   \mathrm{OP=\frac{-6-\frac{1}{4}}{-2-\frac{1}{2}}=\frac{5}{2}}

Hence the correct answer is option 3

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE