Get Answers to all your Questions

header-bg qa

If the line a x+y=c , touches both the curves x^2+y^2=1 \text { and } y^2=4 \sqrt{2} x, then |c| is equal to 

Option: 1

\begin{aligned} & \frac{1}{\sqrt{2}} \\ \end{aligned}


Option: 2

2 \\


Option: 3

\sqrt{2} \\


Option: 4

\frac{1}{2}


Answers (1)

best_answer

Since, equation of given parabola is y^2=4 \sqrt{2} x  and 

equation of tangent line is ,a x+y=c

 then  c=\frac{\sqrt{2}}{m}=\frac{\sqrt{2}}{-a}

[\because line y=m x+c  c = + touches the parabola y^2=4 a x \text { iff } c=a / m ]

Then,

 equation of tangent line becomes = 

y=-a x-\frac{\sqrt{2}}{a}  —-------(i)

\because Line (i) is also tangent to the circle  x^2+y^2=1

\therefore Radius      =1=\frac{\left|-\frac{\sqrt{2}}{a}\right|}{\sqrt{1+a^2}}

\Rightarrow \sqrt{a+a^2}=\left|-\frac{\sqrt{2}}{a}\right|

\begin{aligned} & \Rightarrow a^4+a^2-2=0 \\ & \Rightarrow\left(a^2+2\right)\left(a^2-1\right)=0 \\ & \Rightarrow a^2=1 \\ & \therefore|c|=\frac{\sqrt{2}}{|a|}=\sqrt{2} \end{aligned}

Posted by

vinayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE