Get Answers to all your Questions

header-bg qa

If the stationary proton and \alpha - particle are accelerated through same potential difference, the ratio of de-Broglie wavelength will be

Option: 1

2


Option: 2

1


Option: 3

2 \sqrt{2}


Option: 4

None of these


Answers (1)

best_answer

The gain in K.E. of a change particle after moving through a potential difference of \mathrm{V}is given as \mathrm{eV}, that is also equal to \frac{1}{2} {mv}^2 where v is the velocity of the charge particle.

\frac{1}{2} m v^2=q v        \Rightarrow     v=\sqrt{\frac{2 q V}{m}}

\therefore \quad \mathrm{mv}=\sqrt{2 \mathrm{mqV}}

\Rightarrow \quad \text { de-Broglie wavelength }=\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}

\therefore \quad \frac{\lambda_p}{\lambda_\alpha}=\sqrt{\frac{m_\alpha q_\alpha V_\alpha}{m_p q_p V_p}}

Putting\, \, \mathrm{V}_\alpha=\mathrm{V}_{\mathrm{p}}, \frac{\lambda_{\mathrm{p}}}{\lambda_\alpha}=\sqrt{\frac{(4)(2)}{(1)(1)}}=2 \sqrt{2}

 

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE