Get Answers to all your Questions

header-bg qa

\mathrm{\int_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x} is equal to

Option: 1

\mathrm{10(\pi+4)}


Option: 2

\mathrm{10(\pi+2)}


Option: 3

\mathrm{20(\pi-2)}


Option: 4

\mathrm{20(\pi+2)}


Answers (1)

best_answer

\mathrm{|\sin x|+|\cos x|}  is periodic with period  \mathrm{\frac{\pi}{2}}

\therefore Required expression

\mathrm{=40 \int_{0}^{\pi / 2}(|\sin x|+|\cos x|)^{2} d x} \\

\mathrm{=40 \int_{0}^{\pi / 2}(\sin x+\cos x)^{2} d x}

\mathrm{=40 \int_{0}^{\pi / 2}(1+\sin 2 x) d x} \\

\mathrm{=40\left[x-\left.\frac{\cos 2 x}{2}\right|_{0} ^{\pi / 2}\right] }\\

=40\left[\frac{\pi}{2}-\frac{1}{2}(-1-1)\right] \\

=40\left[\frac{\pi}{2}+1\right] \\

=20(\pi+2)

Hence correct option is 4

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE