Get Answers to all your Questions

header-bg qa

In the figure given below, a block of mass \mathrm{M= 490 g}  placed on a frictionless table is connected with two springs having same spring constant \mathrm{(K = 2 N m^{-1})}. If the block is horizontally displaced through \mathrm{' X ' m} then the number of complete oscillations it will make in \mathrm{14\pi} seconds will be ________.

Option: 1

20


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

 \mathrm{ T=2 \pi \sqrt{\frac{m}{k_{e q}}} }
\mathrm{ T=2 \pi \sqrt{\frac{m}{2 k}} }
\mathrm{ T=2 \pi \sqrt{\frac{0.49}{2 \times 2}} }
\mathrm{T=2 \pi \times \frac{0.7}{2}=0.7 \pi }
\mathrm{ \text { in } 14 \pi \mathrm{sec}, \frac{14 \pi}{0.7 \pi}=20 }

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE