Get Answers to all your Questions

header-bg qa

In the network of resistors each of value \mathrm{R} shown the figure, the equivalent resistance between the junctions \mathrm{A} and \mathrm{E} is

Option: 1

5 \mathrm{R} / 7


Option: 2

5 \mathrm{R} / 12


Option: 3

7 \mathrm{R} / 5


Option: 4

7 \mathrm{R} / 12


Answers (1)

best_answer

Symmetry of the circuit shows that B and D are at the same potential and \mathrm{F} and \mathrm{H} are at another potential. So the circuit can be redrawn as shown in figure.


The equivalent resistance in the middle line between \mathrm{B} and \mathrm{H} is.
\mathrm{\frac{R}{2}+R+\frac{R}{2}=2 R}. The total equivalent resistance between \mathrm{B} and \mathrm{H} is \mathrm{R^{\prime}} such that.
\mathrm{\frac{1}{\mathrm{R}^{\prime}}=\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}}+\frac{1}{2 \mathrm{R}} \Rightarrow \mathrm{R}^{\prime}=\frac{2}{5} \mathrm{R}}

The equivalent resistance between \mathrm{A} and \mathrm{E} along path \mathrm{A B E} is
\mathrm{\frac{\mathrm{R}}{2}+\frac{2}{5} \mathrm{R}+\frac{\mathrm{R}}{2}=\frac{7}{5} \mathrm{R}}

Total equivalent resistance between \mathrm{A} and \mathrm{E}  is the resistance \mathrm{R} and (7/5)R in parallel that is
\mathrm{\mathrm{Req}=\frac{\mathrm{R} \times \frac{7}{5} \mathrm{R}}{\mathrm{R}+\frac{7}{5} \mathrm{R}}=\frac{7 \mathrm{R}}{12}}

Posted by

rishi.raj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE