Get Answers to all your Questions

header-bg qa

In the study of transistor as amplifier, if \mathrm{\alpha=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}} and \mathrm{\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}},} where \mathrm{\mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}} and \mathrm{\mathrm{I}_{\mathrm{E}}} 

are the collector, base and emitter currents, then

Option: 1

\mathrm{ \beta=\frac{(1+\alpha)}{\alpha} }


Option: 2

\mathrm{\quad \beta=\frac{(1-\alpha)}{\alpha}}


Option: 3

\mathrm{\quad \beta=\frac{\alpha}{(1-\alpha)}}


Option: 4

\mathrm{\beta=\frac{\alpha}{(1+\alpha)}}


Answers (1)

best_answer

As we know that \mathrm{I_c=I_c+I_b}

Divide both side by \mathrm{I_c}

\mathrm{\begin{aligned} & \frac{I_c}{I_c}=1+\frac{I_b}{I_c} \Rightarrow \frac{1}{\alpha}=1+\frac{1}{\beta} \\ & \beta=\frac{\alpha}{1-\alpha} \end{aligned}}

Posted by

Nehul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE