Get Answers to all your Questions

header-bg qa

Let \mathrm{A}=\{-4,-3,-2,0,1,3,4\} and \mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}: \mathrm{b}=|\mathrm{a}|\right. or \left.\mathrm{b}^2=\mathrm{a}+1\right\} be a relation on \mathrm{A}. Then the minimum number of elements, that must be added to the relation \mathrm{R} so that it becomes reflexive and symmetric, is__________

Option: 1

7


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\begin{aligned} & \mathrm{R}=[(-4,4),(-3,3),(3,-2),(0,1),(0,0),(1,1) \\ & (4,4),(3,3)\} \\ & \text { For reflexive, add } \Rightarrow(-2,-2),(-4,-4),(-3,-3) \\ & \text { For symmetric, add } \Rightarrow(4,-4),(3,-3),(-2,3),(1,0) \end{aligned}

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE