Get Answers to all your Questions

header-bg qa

Let \mathrm{PQ} be a focal chord of the parabola \mathrm{ y^{2} = 36x}  of length 100, making an acute angle with the positive x-axis. Let the ordinate of \mathrm{ P} be positive and M be the point on the line segment \mathrm{ PQ} such that \mathrm{ PM:MQ = 3:1}. Then which of the following points does NOT lie on the line passing through \mathrm{ M} and perpendicular to the line \mathrm{ PQ}?

Option: 1

\left ( 3,33 \right )


Option: 2

\left ( 6,29 \right )


Option: 3

\left ( -6,45 \right )


Option: 4

\left ( -3,43 \right )


Answers (1)

best_answer

\mathrm{\begin{aligned} & 9\left(t+\frac{1}{t}\right)^2=100 \\ \end{aligned}}

\mathrm{ t=3 }

\begin{aligned} & \Rightarrow \mathrm{P}(81,54) \& Q(1,-6) \\ \end{aligned}

\mathrm{M(21,9) }

\begin{aligned} & \Rightarrow \mathrm{L} \text { is }(\mathrm{y}-9)=\frac{-4}{3}(x-21) \\ \end{aligned}

\begin{aligned} & 3 \mathrm{y}-27=-4 x+84 \\ & 4 \mathrm{x}+3 \mathrm{y}=111 \end{aligned}

 

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE