Get Answers to all your Questions

header-bg qa

Let  P\:\:and\:\:Q  be points (4,-4)\:\: and\:\: (9, 6)   of the parabola y^{2} = 4a( x - b) . Let R be a point on the arc of the parabola between P\:\:and\:\:Q. Then the area of  \Delta PRQ is largest when

Option: 1

\angle PRQ=90^{0}


Option: 2

the \:\:point\:\:R\:is \:\:(4,4)


Option: 3

the\:\:point\:\:R\:\:is \:\:\left ( \frac{1}{4},1 \right )


Option: 4

None\:\:of\:\:these


Answers (1)

best_answer

 

Parametric coordinates of parabola -

x= at^{2}

y= 2at

- wherein

For the parabola.

y^{2}=4ax

 

 

Since (4,-4)\:\:and\:\:(9,6) lie on y^{2}=4a(x-b)

\therefore 4=a(4-b)\:\:and\:\:9=a(9-b)

\therefore a=1\:\:and\:\:b=0

\therefore the\:\:parabola\:\:is\:\:y^{2}=4x

let the point R be (t^{2},2t)

\therefore Area \:\:of\:\:\Delta PRQ

 

=\frac{1}{2}\begin{vmatrix} 4 &-4 &1 \\ 9 & 6 &1 \\ t^{2}&2t &1 \end{vmatrix}

=\frac{1}{2}\begin{vmatrix} 4 &-4 &1 \\ 5 & 10 &0 \\ t^{2}-4&2t+4 &0 \end{vmatrix}    =\frac{1}{2}\begin{vmatrix} 5 &10 \\ t^{2}-4 & 2t+4 \end{vmatrix}

 

=\frac{1}{2}(10t+20-10t^{2}+40)

=5t^{2}+5t+30=-5(t^{2}-t+\frac{1}{4})+30+\frac{5}{4}

=-5\left ( t-\frac{1}{2} \right )^{2}+\frac{125}{4}

\therefore Area\:\:in\:\:largest\:\:when\:\:t=\frac{1}{2}

 

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE