Get Answers to all your Questions

header-bg qa

Let \mathrm{f(x) \text { and } g(x)} be two real polynomials of degree \mathrm{2\: and\: 1} respectively. If  \mathrm{f(g(x))=8 x^{2}-2 x, \text { and } g(f(x))=4 x^{2}+6 x+1}, then the value of \mathrm{f(2)+g(2)} is ______.

Option: 1

18


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{f(g(x))=8 x^{2}-2 x} \\

\mathrm{g(f(x))=4 x^{2}+6 x+1} \\

\mathrm{\text { Let } f(x)=a x^{2}+b x+c \text { and } g(x)=d x+e}

\mathrm{f(g(x)) =a(d x+e)^{2}+b(d x+e)+c} \\

         \mathrm{=a d^{2} x^{2}+2 a d e x+a e^{2}+b d x+b e+c} \\             

        \mathrm{=a d^{2} x^{2}+(2 a d e+b d) x+\left(a e^{2}+b e+c\right)}

 

\mathrm{g(f(x)) =d\left(a x^{2}+b x+c\right)+e }\\

\mathrm{=a d x^{2}+b d x+(c d+e)}

Comparing

\mathrm{a d=4, a d^{2}=8}\\

\mathrm{Dividing\: d=2 \Rightarrow a=2}\\

\mathrm{And \: b d=6 \Rightarrow b=3}\\

\mathrm{And \: 2 a d e+b d=-2}\\

\mathrm{8 e+6=-2 \Rightarrow e=-1}\\

\mathrm{And\: c d+e=1 \Rightarrow 2 c-1=1 \Rightarrow c=1}

 

\mathrm{\therefore f(x) =2 x^{2}+3 x+1, g(x)=2 x-1 }\\

\mathrm{\therefore f(2)+g(2) =(8+6+1)+(4-1)} \\

\mathrm{=15+3} \\

\mathrm{=18}

Hence answer is \mathrm{18}

Posted by

Rishabh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE