Get Answers to all your Questions

header-bg qa

Let es be the angular velocity of the earth's rotation about its axis. Assume that the acceleration due to gravity on the earth's surface has the same value at the equator and the poles. An object weighed at the equator gives the same reading as a reading taken at a depth d below earth's surface at a pole (d<<R). The value of d is

Option: 1

\frac{\omega^{2} R^{2}}{g} \\


Option: 2

\frac{\omega^{2} R^{2}}{2 g} \\


Option: 3

\frac{2 \omega^{2} R^{2}}{g} \\


Option: 4

\frac{\sqrt{R g}}{g}


Answers (1)

best_answer

g^{\prime}=g_{e}\left(1-\frac{d}{R}\right)

 

Also,

g^{\prime}=g_{e}-\omega^{2} R \cos \phi

\\ \text{At the equator,} \\ $\phi=0^{\circ}$ \\ $\therefore \cos \phi=1$ \\ Hence, \\ $g^{\prime}=g_{e}-\omega^{2} R$

So,

\begin{array}{l} g_{e}\left(1-\frac{d}{R}\right)=g_{e}-\omega^{2} R \\ \\ \Rightarrow \frac{d g_{e}}{R}=\omega^{2} R \\\\ \Rightarrow d=\frac{\omega^{2} R}{g_{e}}\\ \end{array}

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE