Get Answers to all your Questions

header-bg qa

Let \mathrm{f(x)=[\cos x+\sin x], 0<x<2 \pi}  where \mathrm{[x]} denotes the greatest integer less than or equal to \mathrm{x}. The number of points of discontinuity of \mathrm{f(x)} is
 

Option: 1

6


Option: 2

5


Option: 3

4


Option: 4

3


Answers (1)

best_answer

\begin{aligned} & \mathrm{\cos x+\sin x=\sqrt{2} \cos \left(x-\frac{\pi}{4}\right), \text { So, } f(x)=\left[\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)\right] }\text {. } \\ \end{aligned}

We know that [x] is discontinuous at integral values of x.

Now, \begin{aligned} & \mathrm{\sqrt{2} \cos \left(x-\frac{\pi}{4}\right) } \\ \end{aligned}  is an integer at \begin{aligned} & \mathrm{ x=\frac{\pi}{2}, \frac{\pi}{2}+\frac{\pi}{4}, \pi+\frac{\pi}{4}, \frac{3 \pi}{2}+\frac{\pi}{4}.} \\ \end{aligned}

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE