Get Answers to all your Questions

header-bg qa

Let \mathrm{S_1, S_2, S_3 \ldots \ldots \ldots \ldots \ldots . .}. be squares such that for each \mathrm{n \geq 1}, the length of a side of \mathrm{S_n} equals the length of a diagonal of \mathrm{S_{n+1}}. If the length of a side of \mathrm{S_1\: \: is \: \: 10 \mathrm{~cm}}, then for which of the following values of \mathrm{n} is the area of \mathrm{S_n} less than \mathrm{1 \mathrm{sq}. \mathrm{cm}}.?
 

Option: 1

5
 


Option: 2

6


Option: 3

7


Option: 4

8


Answers (1)

best_answer

For a square \mathrm{A B C D}, the length of diagonal \mathrm{d=a \sqrt{2}}

As given \mathrm{a_n=\sqrt{2} a_{n+1} ; \mathrm{n}=1,2, \ldots \ldots.}

\mathrm{ \therefore a_{n+1}=\frac{a_n}{\sqrt{2}}=\frac{a_{n-1}}{(\sqrt{2})^2}=\ldots \ldots \ldots . .=\frac{a_1}{(\sqrt{2})^n} }

\mathrm{ \Rightarrow a_n=\frac{a_1}{(\sqrt{2})^{n-1}}=\frac{10}{2^{(n-1) / 2}}}

As area of the square \mathrm{S_n<1,}

\mathrm{\Rightarrow a_n^2<1 \text { or } \frac{100}{2^{n-1}}<1 \text { or } 200<2^n}

Or \mathrm{2^n>200}

As \mathrm{ 2^7=1}

Hence option 4 is correct.


 

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE