Get Answers to all your Questions

header-bg qa

Let \mathrm{S}=\{z \in \mathrm{C}:|z-2| \leq 1, z(1+i)+\bar{z}(1-i) \leq 2\}. Let |z-4 i| attains minimum and maximum values, respectively, at z_{1} \in S$ and $z_{2} \in$ S. If $5\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=\alpha+\beta \sqrt{5}, where \alpha$ and $\beta are integers, then the value of \alpha+\beta is equal to_____________.

Option: 1

26


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{|z-2| \leq 1 \Rightarrow} inside region of circle with centre \mathrm{(2,0)}  and radius \mathrm{1}

\mathrm{z(1+i)+\bar{z}(1-i) \leq 2 } \\

\mathrm{ \text { Put } z=x+i y} \\

\mathrm{(x+i y)(1+i)+(x-i y)(1-i) \leq 2 }\\

\mathrm{\Rightarrow x+i x+i y-y+x-i x-i y-y \leq 2} \\

\mathrm{\Rightarrow x-y \leq 1}

Line joining (0,4) and (2,0)

\mathrm{\frac{x}{2}+\frac{y}{4}=1 \Rightarrow 2 x+y=4}

For \mathrm{z_{1} \text { solve, }(x-2)^{2}+y^{2}=1 \text { and } 2 x+y=4}

\mathrm{(x-2)^{2}+(4-2 x)^{2}=1} \\

\mathrm{x^{2}-4 x+4+16+4 x^{2}-16 x=1} \\

\mathrm{5 x^{2}-20 x+19=0} \\

\mathrm{x=\frac{20 \pm \sqrt{20}}{10}=\frac{20 \pm 2 \sqrt{5}}{10}=2 \pm \frac{1}{\sqrt{5}}} \\

\mathrm{x=2-\frac{1}{\sqrt{5}}}

\mathrm{y =4-2 x} \\

\mathrm{=4-2\left(2-\frac{1}{\sqrt{5}}\right)} \\

\mathrm{=4-4+\frac{2}{\sqrt{5}}=\frac{2}{\sqrt{5}} \Rightarrow z_{1}=\left(2-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)}

\mathrm{\left|z_{1}\right|^{2} =\left(2-\frac{1}{\sqrt{5}}\right)^{2}+\frac{4}{5}=4+\frac{1}{5}-\frac{4}{\sqrt{5}}+\frac{4}{5}=5-\frac{4}{\sqrt{5}} }\\

\mathrm{z_{2} =1 \Rightarrow\left|z_{2}\right|^{2}=1 }\\

\mathrm{\therefore 5\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=5\left(5-\frac{4}{\sqrt{5}}+1\right)} \\

\mathrm{=5\left(6-\frac{4}{\sqrt{5}}\right)} \\

\mathrm{=30-4 \sqrt{5}} \\

\mathrm{\Rightarrow \alpha=30, \beta=-4 }\\

\mathrm{\Rightarrow \alpha+\beta=26}

Hence answer is \mathrm{26}

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE