Get Answers to all your Questions

header-bg qa

Let  \mathrm{a}>0, \mathrm{~b}>0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola  \mathrm{\frac{x^{2}}{\mathrm{a}^{2}}-\frac{y^{2}}{\mathrm{~b}^{2}}=1}.  Let \mathrm{e}^{\prime}$ and $l^{\prime} respectively be the

eccentricity and length of the latus rectum of its conjugate hyperbola. If

\mathrm{e}^{2}=\frac{11}{14} l$ and $\left(\mathrm{e}^{\prime}\right)^{2}=\frac{11}{8} l^{\prime}, then the value of  77 \mathrm{a}+44 \mathrm{~b} is equal to :

Option: 1

100


Option: 2

110


Option: 3

120


Option: 4

130


Answers (1)

best_answer

\mathrm{\text { Given } e^{2}=\frac{11}{14} \: l} \\

\mathrm{\Rightarrow 1+\frac{b^{2}}{a^{2}}=\frac{11}{14} \cdot\left(\frac{2 b^{2}}{a}\right)} \\

\mathrm{\Rightarrow \frac{a^{2}+b^{2}}{a^{2}}=\frac{22 b^{2}}{14 a} }\\

\mathrm{\Rightarrow 7\left(a^{2}+b^{2}\right)=11 b^{2} a}    ...........(i)

\mathrm{\text { Also }e'^{2}=\frac{11}{8}\: l^{\prime}} \\

\mathrm{ \Rightarrow 1+\frac{a^{2}}{b^{2}}=\frac{11}{8} \cdot \frac{2 a^{2}}{b}} \\

\mathrm{\Rightarrow b^{2}+a^{2}=b^{2}\left(\frac{11 a^{2}}{4 b}\right)} \\

\mathrm{\Rightarrow 4\left(a^{2}+b^{2}\right)=11 a^{2} b}    .............(ii)

Divide eqn (i) and (ii)

\mathrm{\frac{7}{4}=\frac{b}{a}} \\

\mathrm{\text { Also } 4\left(a^{2}+b^{2}\right)=11 a^{2} b} \\

\mathrm{\Rightarrow 4\left(1+\left(\frac{b}{a}\right)^{2}\right)=11 b}

\mathrm{\Rightarrow 11 b=4\left(1+\frac{49}{16}\right) }\\

\mathrm{\Rightarrow 11 b=4\left(\frac{65}{16}\right)} \\

\mathrm{\Rightarrow b=\frac{65}{44}} \\

\mathrm{\Rightarrow a=\frac{4 b}{7}=\frac{4}{7} \cdot \frac{65}{44}=\frac{65}{77} }\\

\mathrm{\therefore 77 a+44 b=65+65=130}

Hence the correct answer is option 4.

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE