Get Answers to all your Questions

header-bg qa

Let the eccentricity of the hyperbola  \mathrm{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { be } \frac{5}{4}} . If the equation of the normal at the point \mathrm{\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)}  on the hyperbola is \mathrm{8 \sqrt{5} x+\beta y=\lambda,} then \mathrm{ \lambda-\beta} is equal to ___________.

Option: 1

85


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Given

\mathrm{s: \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}}=1, e=\frac{5}{4}}\\

\mathrm{\because b^{2} =a^{2}\left(e^{2}-1\right)}\\

\mathrm{b^{2} =a^{2}\left(\frac{25}{26}-1\right)}\\

\mathrm{b^{2} =a^{2}\left(\frac{9}{16}\right)} ...........(1)

\mathrm{a \sec \theta =\frac{8}{\sqrt{5}}} \\

\mathrm{\sec ^{2} \theta =\frac{64}{5 a^{2}}}

\mathrm{b \tan \theta =\frac{12}{5}}\\            ......\mathrm{\because b^{2}=a^{2}\left ( \frac{9}{16} \right )}

\mathrm{\tan ^{2} \theta =\frac{144}{25 b^{2}}}\\

\mathrm{\tan ^{2} \theta =\frac{144}{25} \times \frac{16}{9 a^{2}}}\\

\mathrm{\tan ^{2} \theta =\frac{256}{25 a^{2}}}

\mathrm{\because \sec ^{2} a-\tan ^{2} a=1 }\\

\mathrm{\frac{64}{5 a^{2}}-\frac{25}{25 a^{2}}=1}\\

\mathrm{\frac{320-256}{25 a^{2}}=1 \Rightarrow a^{2}=\left(\frac{64}{25}\right)}\\

\mathrm{\because b^{2}=a^{2}\left(\frac{9}{16}\right) \Rightarrow b^{2}=\frac{64}{25} \times \frac{9}{16}=\frac{36}{25} }

The equation of the normal to the hyperola at any point \mathrm{\left ( x_{1}y_{1} \right ) } lying on it is

\mathrm{\frac{x-x_{1}}{x_{1 / a^{2}}}+\frac{y-y_{1}}{y_{1} / b^{2}}=0}

\mathrm{\frac{x-8 / \sqrt{5}}{\frac{8}{\sqrt{5}} / \frac{64}{25}}+\frac{y-12 / 5}{\frac{12}{5}/ \frac{36}{25}}=0}\\

\mathrm{\frac{x-\frac{8}{\sqrt{5}}}{\frac{5 \sqrt{5}}{8}}+\frac{y-12 / 5}{5 / 3}=0}

\mathrm{\frac{8}{5 \sqrt{5}}\left[x-\frac{8}{\sqrt{5}}\right]+\frac{3}{5}\left[y-\frac{12}{5}\right]=0}\\

\mathrm{\frac{8}{5 \sqrt{5}} x-\frac{64}{25}+\frac{3}{5} y-\frac{36}{25}=0}\\

\mathrm{\frac{8 \sqrt{5}}{25} x-\frac{64}{25}+\frac{3 y}{5}-\frac{36}{25}=0}

\mathrm{\frac{8 \sqrt{5} x+15 y-64-36}{25}=0}\\

\mathrm{\text { Ni :} 8 \sqrt{5} x+15 y-100=0}   ......(1)

\mathrm{N:8 \sqrt{5} x+\beta y=\lambda }

\mathrm{\text { so }{\beta }=15 \quad \lambda=100}\\

\mathrm{\lambda-\beta=100-15=85}

Hence the answer is 85

 

 

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE