Get Answers to all your Questions

header-bg qa

Let the mean and standard deviation of marks of class A of 100 students be respectively 40 and \alpha(> 0 ), and the mean and standard deviation of marks of class B of \mathrm{n} students be respectively 55 and 30 \mathrm{-\alpha}. If the mean and variance of the marks of the combined class of \mathrm{100+\mathrm{n}} studants are respectively 50 and 350 , then the sum of variances of classes \mathrm{A \: and \: B} is :

 

Option: 1

650


Option: 2

450


Option: 3

900


Option: 4

500


Answers (1)

\begin{aligned} & \mathrm{m}_{\mathrm{A}}=40 \mathrm{~S} \cdot \mathrm{d}_{\mathrm{A}}=\alpha>0 \quad \mathrm{n}_{\mathrm{A}}=100 \\ \end{aligned}

\begin{aligned} & \mathrm{~m}_{\mathrm{B}}=55 \mathrm{~S} \cdot \mathrm{d}_{\mathrm{B}}=30-\alpha \mathrm{n}_{\mathrm{B}}=\mathrm{n} \end{aligned}

$$ \mathrm{m}_{\mathrm{AVB}}=50 \quad \text { Variance }_{\mathrm{AVB}}=350 \mathrm{n}_{\mathrm{AVB}}=100+\mathrm{n}

\mathrm{A=\left\{x_1, \ldots \ldots ., x_{100}\right\} B=\left\{y_1 \ldots ., y_n\right\} }

\begin{aligned} & \sum \mathrm{x}_{\mathrm{i}}=4000 \\ & \sum \mathrm{y}_{\mathrm{i}}=55 \mathrm{n} \end{aligned}

\sum\left(\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}\right)=50(100+\mathrm{n})

4000+55 \mathrm{n}=5000+50 \mathrm{n}

Using formula of standard deviation

\alpha^2=\frac{\sum \mathrm{x}_{\mathrm{i}}^2}{100}-(40)^2 \quad(30-\alpha)^2 \frac{\sum \mathrm{y}_{\mathrm{i}}^2}{200}-(55)^2
\sum \mathrm{x}_{\mathrm{i}}^2=100\left(1000+\alpha^2\right)
\sum \mathrm{y}_{\mathrm{i}}^2=200\left((55)^2+(30-\alpha)^2\right)
350=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}^2+\mathrm{y}_{\mathrm{i}}^2\right)}{300}-(50)^2
\sum \mathrm{x}_{\mathrm{i}}^2+\sum \mathrm{y}_{\mathrm{i}}^2=\left((50)^2+350\right) 300
160000+100 \alpha^2+200(55)^2+200(30-\alpha)^2
(50)^2 300+350 \times 300
1600+\alpha^2+6050+2(30-\alpha)^2=7500+1050
\alpha^2+1800-120 \alpha+2 \alpha^2-900=0
3 \alpha^2-120 \alpha+900=0
\alpha^2-40 \alpha+300=0
(\alpha-10)(\alpha-30)=0
\alpha=10 \text { or } \alpha=30
\text { if } \alpha=10 \text { VarA }=100 \& \text { VarB }=400

\mathrm{Var_{A}+V_{arB}=500}

 

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE