Get Answers to all your Questions

header-bg qa

Let the point \mathrm{P(\alpha, \beta)} be at a unit distance from each of the two lines \mathrm{L_{1}: 3 x-4 y+12=0}, and \mathrm{L_{2}: 8 x+6 y+11=0}. If \mathrm{P} lies below \mathrm{L_{1}} and above \mathrm{L_{2}}, then \mathrm{100(\alpha+\beta)} is equal to

Option: 1

-14


Option: 2

42


Option: 3

-22


Option: 4

14


Answers (1)

best_answer

P and origin lie on same side of \mathrm{L_{1}}

\mathrm{\Rightarrow \frac{3 \alpha-4 \beta+12}{12}>0} \\

\mathrm{\Rightarrow 3 \alpha-4 \beta+12>0}     ........(i)

Similarly for \mathrm{L_{2}}

\mathrm{\frac{8 \alpha+6 \beta+11}{11}>0} \\

\mathrm{\Rightarrow 8 \alpha+6 \beta+11>0}       ..........(ii)

Also distance from \mathrm{L_{1}} and \mathrm{L_{2}=1}

\mathrm{\Rightarrow \frac{|3 \alpha-4 \beta+12|}{5}=1} \\

\mathrm{\Rightarrow 3 \alpha-4 \beta+12=5}     ( using (ii) )

And  \mathrm{\frac{|8 \alpha+6 \beta+11|}{10}=1 }\\

\mathrm{8 \alpha+6 \beta+11=10}

Solving these 2 equations

\mathrm{\alpha=\frac{-23}{25}, \quad \beta=\frac{53}{50}} \\

\mathrm{\therefore 100\left(\alpha_{1} \beta\right)=14}

Hence correct option is 4

 

 

 

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE