Get Answers to all your Questions

header-bg qa

Let the system of linear equations

\begin{aligned} &x+y+\alpha z=2 \\ &3 x+y+z=4 \\ &x+2 z=1 \end{aligned}

Have a unique solution \mathrm{\left (x^{\ast},y^{\ast},z^{\ast} \right )} If \mathrm{\left (\alpha ,x^{\ast} \right )},\mathrm{\left (y^{\ast} ,\alpha \right )} and\mathrm{\left (x^{\ast},-y^{\ast} \right )} are collinear points, then the sum of absolute values  of all possible values of \mathrm{\alpha } is

Option: 1

4


Option: 2

3


Option: 3

2


Option: 4

1


Answers (1)

best_answer

\mathrm{x+y+\alpha z =2 }\\

\mathrm {3 x+y+z =4} \\

\mathrm{x+2 z =1}

For unique solution:

D=\left|\begin{array}{lll} 1 & 1 & \alpha \\ 3 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right| \neq 0

\begin{gathered} 2-5-\alpha \neq 0 \\ \alpha \neq-3 \end{gathered}

D_{1}=\left|\begin{array}{lll} 2 & 1 & \alpha \\ 4 & 1 & 1 \\ 1 & 0 & 2 \end{array}\right|=-\alpha-3

D_{2}=\left|\begin{array}{lll} 1 & 2 & \alpha \\ 3 & 4 & 1 \\ 1 & 1 & 2 \end{array}\right|=-\alpha-3

D_{3}=\begin{vmatrix} 1 & 1 &2 \\ 3 &1 &4 \\ 1 & 0 &1 \end{vmatrix}=0

Hunce \alpha \neq-3, \quad x=1=y, z=0

Non

\begin{gathered} \left|\begin{array}{ccc} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & -1 & 1 \end{array}\right|=0 \\ \alpha^{2}=1 \\ \alpha=\pm 1 \\ \end{gathered}

Posted by

Gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE