Get Answers to all your Questions

header-bg qa

Momet of Inertia (M.I) of four bodies having same mass \mathrm{'M'} and radius \mathrm{'2R'} are os follows :

\mathrm{I_{1}=M.I} of solid spehere about it's diameter

\mathrm{I_{2}=M.I} of solid cylinder about it's axis

\mathrm{I_{3}=M.I} of solid circular disc about it's daimeter

\mathrm{I_{4}=M.I} of thin circular ring about it's diameter

If  \mathrm{2\left ( I_{2}+I_{3} \right )+I_{4}=x\cdot I_{1}} then the value of \mathrm{x} will be____________.

Option: 1

5


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{I_{1}=\frac{2}{5} M(2 R)^{2}=\frac{8 M R^{2}}{5}} \\

\mathrm{I_{2}=\frac{M(2 R)^{2}}{2}=2 M R^{2}} \\

\mathrm{I_{3}=\frac{M(2 R)^{2}}{4}= MR^{2}}

\mathrm{I_{4}=\frac{M(2 R)^{2}}{2}=\frac{4 M R^{2}}{2}=2 M R^{2}}

\mathrm{2\left(I_{2}+I_{3}\right)+I_{4}=x I_{1}} \\

\mathrm{6 M R^{2}+2 M R^{2}=x \frac{\left(8 M R^{2}\right)}{5}} \\

\mathrm{8 M R^{2}=x\frac{\left(8 M R^{2}\right)}{5}} \\

\mathrm{x=5}

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE