Get Answers to all your Questions

header-bg qa

The coefficient of x^{2} in the expansion of the product

(2-x^{2})\cdot ((1+2x+3x^{2})^{6}+(1-4x^{2})^{6}) 

is

  • Option 1)

    107

  • Option 2)

    106

  • Option 3)

    108

  • Option 4)

    155

 

Answers (1)

best_answer

As we have learned

Expression of Binomial Theorem -

\left ( x+a \right )^{n}= ^{n}\! c_{0}x^{n}a^{0}+^{n}c_{1}x^{n-1}a^{1}+^{n}c_{2}x^{n-2}a^{2}x-----^{n}c_{n}x^{0}a^{n}

 

- wherein

for n  +ve integral .

\\\text{Let}\:a=\left(\left(1+2x+3x^2\right)^6+\left(1-4x^2\right)^6\right)\\\text{coefficient}\:of\:x^{2\:}\:\text{in\:the\:expension\:of}\:\\\left(2-x^2\right)\left(\left(1+2x+3x^2\right)^6+\left(1-4x^2\right)^6\right)

\\\Rightarrow 2(\text{coefficient\:of}\:x^{2\:}\text{in}\:a)-1\left(\text{constant\:of\:the\:expensaion\:in}\:a\right)\\\text{In\:the\:expension\:of} \:\left(1+2x+3x^2\right)^6+\left(1-4x^2\right)^6\:\:\text{constant}\:\:=1+1=2\\\text{Now,}\\\text{Coefficient\:of}\:x^{2\:}=\left(\text{Coefficient\:of}\:x^{2\:}\text{in}\:^6C_0\left(1+2x\right)^6\left(3x^2\right)^0\right)+\\\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\text{Coefficient\:of}\:x^{2\:}\text{in}\:^6C_1\left(1+2x\right)^5\left(3x^2\right)^1\right)-\left[^6C_1\left(4x^2\right)\right]\\=60+6\times 3-24=54

\\\therefore\text{ coefficient\:of}\:x^{2\:}\:\text{in\:the\:expension\:of}\:\\\left(2-x^2\right)\left(\left(1+2x+3x^2\right)^6+\left(1-4x^2\right)^6\right)\\=2\times54-2=106

 

 


Option 1)

107

This is incorrect

Option 2)

106

This is correct

Option 3)

108

This is incorrect

Option 4)

155

This is incorrect

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE