Get Answers to all your Questions

header-bg qa

The equation of a circle passing through the origin and cutting of intercepts each equal to +5 of the axis is 

  • Option 1)

    x^{2}+y^{2}+5x-5y=0

  • Option 2)

    x^{2}+y^{2}-5x+5y=0

  • Option 3)

    x^{2}+y^{2}-5x-5y=0

  • Option 4)

    x^{2}+y^{2}+5x+5y=0

 

Answers (1)

best_answer

 

General form of a circle -

x^{2}+y^{2}+2gx+2fy+c= 0
 

- wherein

centre = \left ( -g,-f \right )

radius = \sqrt{g^{2}+f^{2}-c}

 

 x^{2}+y^{2}+2gx+2fy =0

 

as it passes trough origin

Also 

25+10g =0\Rightarrow g=\frac{-5}{2}

&   25+10b =0 \Rightarrow f=\frac{-5}{2}

so, x^{2}+y^{2}-5x-5y =0


Option 1)

x^{2}+y^{2}+5x-5y=0

Incorrect

Option 2)

x^{2}+y^{2}-5x+5y=0

Incorrect

Option 3)

x^{2}+y^{2}-5x-5y=0

Correct

Option 4)

x^{2}+y^{2}+5x+5y=0

Incorrect

Posted by

Aadil

View full answer