Get Answers to all your Questions

header-bg qa

Seven digits from the numbers 1,2,3,4,5,6,7,8 and 9 are written in random order. If the probability that this seven-digit number is divisible by 9 is \lambda, then the value of must be

Option: 1

1999


Option: 2

9999


Option: 3

1


Option: 4

1111


Answers (1)

Let \mathrm{a_1, a_2, a_3, a_4, a_5, a_6, a_7} be the seven digits and the remaining two be \mathrm{a_8 \: \: and\: \: a_9.}
Let \mathrm{a_1+a_2+a_3+a_4+a_5+a_6+a_7 =9 k, k \in I } .........(i)

Also,  \mathrm{a_1+a_2+a_3+a_4+\ldots+a_9 =1+2+3+4+\ldots+9 }

\mathrm{ =\frac{9 \times 10}{2} }

\mathrm{=45}             ......................(ii)

Subtracting Eq. (i) from (ii), then

\mathrm{ a_8+a_9=45-9 k } ..............(iii)

Since, \mathrm{ a_1+a_2+a_3+\ldots+a_9\: and \: a_1+a_2+\ldots+a_7 } are divisible by 9 if and only if \mathrm{ a_8+a_9 } is divisible by 9 . Let \mathrm{ S } be the sample space and \mathrm{ E } be the event that the sum of the digits \mathrm{ a_8 \: \: and\: \: a_9 } is divisible by 9 .

\because \mathrm{ a_8+a_9=45-9 k }

Maximum value of \mathrm{ a_8+a_9=17 } and minimum value of \mathrm{ a_8+a_9=3 }

\mathrm{ \therefore 3 \leq 45-9 k \leq 17 }

\mathrm{ \Rightarrow -42 \leq-9 k \leq-28 }

\mathrm{\Rightarrow \frac{42}{9} \geq k \geq \frac{28}{9} }

or \mathrm{\frac{28}{9} \leq k \leq \frac{42}{9}}

Hence, \mathrm{k=4}                                ( \mathrm{\because k} is positive integer)
From (iii)

\mathrm{a_8+a_9 =45-9 \times 4 }

\mathrm{\therefore a_8+a_9 =9}

Now, possible pair of \mathrm{\left(a_8, a_9\right)} can be

\mathrm{ \{(1,8),(2,7),(3,6),(4,5)\} }

\mathrm{ \therefore \quad E=\{(1,8),(2,7),(3,6),(4,5)\} }

\mathrm{ n(E)=4 \text { and } n(S)={ }^9 C_2=36 }

\mathrm{ \therefore } Required probability \mathrm{ P(E)=\frac{n(E)}{n(S)}=\frac{4}{36}=\frac{1}{9}=\lambda } (given)

\mathrm{\therefore \quad 9999 \lambda =9999 \times \frac{1}{9} }

\mathrm{ =1111}

Hence option 4 is correct.






 

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE