Get Answers to all your Questions

header-bg qa

The equation of a tangent to the circle x^{2}+y^{2}=25\;passes \:through (-2,11)\:is

  • Option 1)

    4x+3y=25

  • Option 2)

    7x-24y=320

  • Option 3)

    3x+4y=38

  • Option 4)

    24x+7y+125=0

 

Answers (1)

best_answer

 

Equation of tangent -

xx_{1}+yy_{1}+g(x+x_{1})+f(y+y_{1})+c=0
 

- wherein

Tangent to circle

x^{2}+y^{2}+2gx+2fy+c=0  at  (x_{1},y_{1})

 

 xx_{1}+yy_{1}=25  is the tangent

Now, -2x_{1}+11y_{1}=25 - - -- - - -(1)

Also {x_{1}}^{2}+{y_{1}}^{2}=25--------------(2)

On solving )


Option 1)

4x+3y=25

Correct option

Option 2)

7x-24y=320

Incorrect Option

Option 3)

3x+4y=38

Incorrect Option

Option 4)

24x+7y+125=0

Incorrect Option

Posted by

prateek

View full answer