Get Answers to all your Questions

header-bg qa

A signal A\; cos\omega t is transmitted using v_{_{0}}sin\omega _{0}t as carrier wave. The correct amplitude modulated (AM) signal is :

  • Option 1)

    v_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin\left ( \omega _{0}+\omega \right )t

     

     

     

     

  • Option 2)

     v_{0}sin\left [ \omega _{0}\left ( 1+0.01Asin\omega t \right )t \right ]

  • Option 3)

    \left ( v_{0}+A \right )cos\omega t\; sin\omega_{0}t

  • Option 4)

     \left ( v_{0} +A\right )cos\omega t\; \; sin\omega _{0}t

 

Answers (1)

best_answer

Amplitude modulated signal

=E_{c}sin\omega _{c}t +\frac{mE_{c}}{2}cos \left ( \omega _{c}-\omega _{m} \right )t

                            -\; \frac{mE_{c}}{2}cos \left ( \omega _{c}+\omega _{m} \right )t

E_{c}=amplitude\; of \; carrier\; wave=V_{0}

m=\frac{E_{m}}{E_{c}}=\frac{A}{V_{0}}

there for

AM signal is given by

V_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin \left ( \omega _{0}+\omega \right )t


Option 1)

v_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin\left ( \omega _{0}+\omega \right )t

 

 

 

 

Option 2)

 v_{0}sin\left [ \omega _{0}\left ( 1+0.01Asin\omega t \right )t \right ]

Option 3)

\left ( v_{0}+A \right )cos\omega t\; sin\omega_{0}t

Option 4)

 \left ( v_{0} +A\right )cos\omega t\; \; sin\omega _{0}t

Posted by

solutionqc

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE