Get Answers to all your Questions

header-bg qa

Suppose the mean and variance of the frequency distribution are

X x_1=2 x_2=6 x_3=8 x_4=9
F 4 4 \alpha \beta

6.8 respectively. If  x^{3} changes from  8\ to\ 7, the average of the new data will be:

 

Option: 1

15.6


Option: 2

20


Option: 3

\frac{17}{3}


Option: 4

\frac{89}{25}


Answers (1)

best_answer

Given that:

32+8\alpha+9\beta=\left(8+\alpha+\beta\right)\times6

Or, 2\alpha+3\beta=16\  ------------------ (1)

Now, also we have:

4\times16+4\times\alpha+9\beta=\left(8+\alpha+\beta\right)\times6.8

Or,   640+40\alpha+90\beta=544+68\alpha+68\beta 

Or, 14\alpha-11\beta=48------------------ (2)

From (1) and (2), we get:

\alpha=5 and \beta=2

Therefore,

The new mean =\frac{32+35+18}{15}

                            =\frac{85}{15}=\frac{17}{3}

 

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE