Get Answers to all your Questions

header-bg qa

Tangents are drawn to the hyperbola \mathrm{4 x^2-y^2=36}, from the point T(0,3), touching the hyperbola at P and Q, then the area (in sq. units) of \mathrm{\triangle P T Q} is

Option: 1

36 \sqrt{5}


Option: 2

45 \sqrt{5}


Option: 3

54 \sqrt{3}


Option: 4

60 \sqrt{3}


Answers (1)

best_answer

Let the tangent at \mathrm{(\alpha, \beta)} be \mathrm{4 x \alpha-y \beta=36}

As (0,3) lies on the tangent, so we have 

\mathrm{-3 \beta=36 \Rightarrow \beta=-12}

Now \mathrm{4 \alpha^2-\beta^2=36 \, \, gives \, \, 4 \alpha^2-12^2=36}

\mathrm{ \Rightarrow 4 \alpha^2=180 \Rightarrow \alpha^2=45 \Rightarrow \alpha= \pm 3 \sqrt{5} }

Thus the points P and Q are

\mathrm{ P(3 \sqrt{5},-12), Q(-3 \sqrt{5},-12) }

The area of the \mathrm{\triangle T Q P} is given by

\mathrm{ \Delta=\left|\frac{1}{2}\right| \begin{array}{ccc} 0 & 3 & 1 \\ 3 \sqrt{5} & -12 & 1 \\ -3 \sqrt{5} & -12 & 1 \end{array} \mid }

\mathrm{=\left|\frac{1}{2}[-3(6 \sqrt{5})-36 \sqrt{5}-36 \sqrt{5}]\right|=\frac{1}{2} 90 \sqrt{5}=45 \sqrt{5}}

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE