Get Answers to all your Questions

header-bg qa

The area of cross section of the rope used to lift a load by a crane is \mathrm{2.5 \times 10^{-4} \mathrm{~m}^{2}}. The maximum lifting capacity of the crane is 10 metric tons. To increase the lifting capacity of the crane to 25 metric tons, the required area of cross section of the rope should be : \mathrm{\left(\text { take } g=10 \mathrm{~ms}^{-2}\right. \text { ) }}

Option: 1

\mathrm{6.25 \times 10^{-4} \mathrm{~m}^{2}}


Option: 2

\mathrm{10 \times 10^{-4} \mathrm{~m}^{2}}


Option: 3

\mathrm{1 \times 10^{-4} \mathrm{~m}^{2}}


Option: 4

\mathrm{1.67 \times 10^{-4} \mathrm{~m}^{2}}


Answers (1)

best_answer

For a given material, the breaking stress is same

\mathrm{\therefore \frac{F_1}{A_1}=\frac{F_2}{A_2} }

\mathrm{{\frac{10}{2.5 \times 10^{-4}}}=\frac{25}{A_2} }

\mathrm{A_2=6.25 \times 10^{-4} \mathrm{~m}^2 }

Hence (1) is correct option.


 

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE