Get Answers to all your Questions

header-bg qa

The domain of the function f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}} is (where [x]  denotes the greatest integer less than or equal to \mathrm{x})

Option: 1

(-\infty,-3] \cup[6, \infty)


Option: 2

(-\infty,-2) \cup(5, \infty)


Option: 3

(-\infty,-3] \cup(5, \infty)


Option: 4

(-\infty,-2) \cup[6, \infty)


Answers (1)

best_answer

F(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}
{[\mathrm{x}]^{2}-3[\mathrm{x}]-10>0}
([\mathrm{x}]+2)([\mathrm{x}]-5)>0


[\mathrm{x}]<-2$ or $[\mathrm{x}]>5
[\mathrm{x}] \leq-3  or [\mathrm{x}] \geq 6
x<-2$ or $x \geq 6
\mathrm{x} \in(-\infty,-2) \cup[6, \infty)
 

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE