Get Answers to all your Questions

header-bg qa

The equation of a parabola with the line \mathrm{x+y=2 } as tangent at the vertex and focus at the point \mathrm{(4,4)} is

\mathrm{\mathrm{k}\left[(\mathrm{x}-4)^2+(\mathrm{y}-4)^2\right]=(\mathrm{x}+\mathrm{y}+4)^2}, where \mathrm{\mathrm{k}=}

Option: 1

1


Option: 2

2


Option: 3

3


Option: 4

\frac{1}{2}


Answers (1)

best_answer

Let \mathrm{S(4,4)} be the focus and V be the vertex of the parabola.

Equation of the axis of the parabola is

\mathrm{ \begin{aligned} & y-4=(+1)(x-4) \Rightarrow y-4=x-4 \\ & \Rightarrow y=x \end{aligned} }.......(1)

Solving (1) with \mathrm{ x+y=2 }

We get \mathrm{ V=(1,1)}

Let co-ordinates of D be \mathrm{ (\alpha, \beta) }, then \mathrm{ \frac{\alpha+4}{2}=1} and 

\mathrm{ \frac{\beta+4}{2}=1}

\mathrm{ \Rightarrow \alpha=-2 \text { and } \beta=-2}

Thus co-ordinates of D are \mathrm{(-2,-2)}

Now equation of directrix can be written as \mathrm{ x+y=\lambda}

Since it passes through\mathrm{ (-2,-2)} hence,

\mathrm{ \lambda=-2-2=-4 }

Thus equation of directrix is \mathrm{x+y=-4}

So equation of parabola is

\mathrm{ \sqrt{(x-4)^2+(y-4)^2}=\frac{|x+y+4|}{\sqrt{2}} }

or \mathrm{2\left[(x-4)^2+(y-4)^2\right]=(x+y+4)^2}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE