Get Answers to all your Questions

header-bg qa

The equation of the circle through the points of intersection of the circles

\mathrm{x^2+y^2-6 x+2 y+4=0, \quad x^2+y^2+2 x-4 y-6=0} and with its centre on the line \mathrm{y=x}

Option: 1

\mathrm{7 x^2+7 y^2+10 x-10 y-12=0}


Option: 2

\mathrm{7 x^2+7 y^2-10 x-10 y-12=0}


Option: 3

\mathrm{7 x^2+7 y^2-10 x+10 y-12=0}


Option: 4

\mathrm{7 x^2+7 y^2+10 x+10 y+12=0}


Answers (1)

best_answer

Equation of any circle through the points of intersection of given circles is 

\mathrm{\left(x^2+y^2-6 x+2 y+4\right)+\lambda\left(x^2+y^2+2 x-4 y-6\right)=0}                             \Rightarrow

\mathrm{x^2(1+\lambda)+y^2(1+\lambda)-2 x(3-\lambda)+2 y(1-2 \lambda)+(4-6 \lambda)=0}

or  \mathrm{x^2+y^2-\frac{2 x(3-\lambda)}{(1+\lambda)}+\frac{2 y(1-2 \lambda)}{(1+\lambda)}+\frac{(4-6 \lambda)}{(1+\lambda)}=0}                        \mathrm{....(i)}

\mathrm{\begin{gathered} \text { Its centre }=\left\{\frac{3-\lambda}{1+\lambda}, \frac{2 \lambda-1}{1+\lambda}\right\} \quad \text { lies on the line } y=x \text {. Then } \frac{2 \lambda-1}{1+\lambda}=\frac{3-\lambda}{1+\lambda} \\ \end{gathered}}

\mathrm{\Rightarrow \quad 2 \lambda-1=3-\lambda}        \mathrm{\{\quad \lambda \neq-1\}}

                                              \mathrm{\Rightarrow \quad 3 \lambda=4 \quad \Rightarrow \quad \lambda=\frac{4}{3}}

Substituting the value of  \mathrm{\lambda=\frac{4}{3}} in (i), we get the required equation as \mathrm{7 x^2+7 y^2-10 x-10 y-12=0}

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE