Get Answers to all your Questions

header-bg qa

The equation of the common tangent touching the cincle \mathrm{(x-3)^2+y^3=9} and the parabola \mathrm{y^2=4 x} above the x-axis is
 

Option: 1

\mathrm{\sqrt{3} y-3 x+1}
 


Option: 2

\mathrm{\sqrt{3} y=-(x+3)}
 


Option: 3

\mathrm{\sqrt{3} y=x+3}
 


Option: 4

\mathrm{\sqrt{3} y=-(3 x+1)}


Answers (1)

best_answer

Equation of any tangent to the parabola \mathrm{y^2=4 x} is

\mathrm{ y=m x+1 / m }

It will touch the circle \mathrm{ (x-3)^2+y^2=9 } if distance from the centre \mathrm{ (3,0) to (1) }equals radius of the circle.

i.e. If \mathrm{ \frac{\mid-0+m(3)+\frac{1}{m}\mid}{\sqrt(-1)^{2}+m^{2}}=3 }

\mathrm{ \Rightarrow\left(3 m+\frac{1}{m}\right)^2=9\left(1+m^2\right) }

\mathrm{ \Rightarrow 9 m^2+6+\frac{1}{m^2}=9+9 m^2 }

\mathrm{ \Rightarrow \frac{1}{m^2}=3 \Rightarrow m= \pm \frac{1}{\sqrt{3}} }

As the tangent is above x-axis.
We take \mathrm{ m=\frac{1}{\sqrt{3}} }. Hence required tangent is

\mathrm{ y=\frac{1}{\sqrt{3}} x+\sqrt{3} \text { or } \sqrt{3} y=x+3 . }

Hence option 3 is correct.


 

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE