Get Answers to all your Questions

header-bg qa

The mean of the numbers a, b, 8,5,10 is 6 and their variance is 6.8. If \mathrm{M} is the mean deviation of the numbers about the mean, then 25 \mathrm{M} is equal to :

Option: 1

60


Option: 2

55


Option: 3

50


Option: 4

45


Answers (1)

\mathrm{\text { mean }=6} \\

\mathrm{\frac{a+b+8+5+10}{5}=6 }\\

\mathrm{a+b=7} \\

\mathrm{b=7-a}

 

Variance: 

\mathrm{\sigma^{2}=\frac{\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}}{n}}

\mathrm{6.8=\frac{(a-6)^{2}+(b-6)^{2}+(8-6)^{2}+(5-6)^{2}+(10-6)^{2}}{5}} \\

\mathrm{34=(a-6)^{2}+(7-a-6)^{2}+4+1+18} \\

\mathrm{a^{2}-7 a+12=0 \Rightarrow a=4 \text { or } a=3} \\

\mathrm{a=4 \quad a=3 }\\

\mathrm{b=3 \quad b=4}

 

Mean deviation about mean

\mathrm{M=\frac{\sum_{i=1}^{5}\left|x_{i}-x\right|}{n}} \\

\mathrm{M=\frac{|a-6|+|b-6|+|8-6|+|5-6|+|10-6|}{5} } \\

\mathrm{\text { when } a=3, b=4 }\\                  and   \mathrm{\text { when } a=4, b=3 } \\

\mathrm{M=\frac{3+2+2+1+4}{5}}        and    \mathrm{\quad M=\frac{2+3+2+1+7}{5}}

\mathrm{M=\frac{12}{5}}                                        and    \mathrm{M=\frac{12}{5}}

\\ \mathrm{25 M=25 \times \frac{12}{5}=60}

Hece the correct answer is option 1.

Posted by

Sumit Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE