Get Answers to all your Questions

header-bg qa

The minimum & maximum distance of a point (-1,6) from the ellipse \mathrm{25 x^2+9 y^2+50 x+36 y-164=0} are l and m respectively then \mathrm{m^2-l^2} equals

Option: 1

169


Option: 2

13


Option: 3

100


Option: 4

160


Answers (1)

best_answer

\mathrm{\text { Let } S=25 x^2+9 y^2+50 x+36 y-164=0}                ....(i)

\mathrm{\begin{aligned} \therefore \quad & S_{(-1,6)}=25(-1)^2+9(6)^2+50(-1)+36(6)-164 \\\\ & =25+324-50+216-164>0 \end{aligned}}

which means the point (-1,6) is outside the ellipse.

Now, (i) can be rewritten as

\mathrm{ \frac{(x+1)^2}{9}+\frac{(y+2)^2}{25}=1=\frac{X^2}{a^2}+\frac{Y^2}{b^2} }
\therefore \quad  Centre of ellipse is (-1,-2)

& axis is parallel to y-axis as \mathrm{b>a.}

\mathrm{\therefore \quad}  Vertices are \mathrm{x+1=0 \, \, \&}

\mathrm{ y+2= \pm 5 \text { i.e., }(-1,3) \text { and }(-1,-7) }

The minimum distance \mathrm{=l=R P=6-3 =3}

units and the maximum distance

\mathrm{=m=R Q=6-(-7)=13}

units \mathrm{\therefore \quad m^2-l^2=13^2-3^2=160}

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE