Get Answers to all your Questions

header-bg qa

The minimum value of the sum of the squares of the roots of 

\mathrm{x^{2}+(3-a) x+1=2 a} is:

Option: 1

4


Option: 2

5


Option: 3

6


Option: 4

8


Answers (1)

best_answer

\mathrm{x^{2}+(3-a) x+1=2 a} \\

\mathrm{x^{2}+(3-a) x+(1-2 a)=0} \\

\mathrm{\alpha+\beta=a-3} \\

\mathrm{\alpha \beta=1-2 a }.

\mathrm{\therefore \quad \alpha^{2}+\beta^{2} =(\alpha+\beta)^{2}-2 \alpha \beta} \\

                         \mathrm{=(a-3)^{2}-2(1-2 a)} \\

                         \mathrm{=a^{2}-6 a+9-2+4 a} \\

                         \mathrm{=a^{2}-2 a+7} \\

                         \mathrm{=(a-1)^{2}+6 }\\

\mathrm{\text { Minimum } \text { value }=6}

Hence correct option is 3

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE