Get Answers to all your Questions

header-bg qa

The normal chord to a parabola \mathrm{y^2=4 a x} at the point whose ordinate is equal to abscissa subtends an angle \mathrm{\theta} at the focus, then \mathrm{\frac{\theta}{2}=}
 

Option: 1

\frac{\pi}{6}
 


Option: 2

\frac{\pi}{4}
 


Option: 3

\frac{\pi}{3}
 


Option: 4

\frac{\pi}{2}


Answers (1)

best_answer

Let the normal at \mathrm{P\left(a t_1^2, 2 a t_1\right)} meets the parabola again at \mathrm{Q\left(a t_2^2, 2 a t_2\right)}.

\mathrm{\therefore \quad P Q} is a normal chord and

\mathrm{ t_2=-t_1-\frac{2}{t_1} }       ......(i)

\mathrm{ Given \: \: 2 a t_1=a t_1^2 \Rightarrow t_1=2 }

\mathrm{ \therefore } From (i), \mathrm{ t_2=-3 }

Thus, \mathrm{ P \equiv(4 a, 4 a) and Q \equiv(9 a,-6 a) }

\mathrm{ \therefore \quad \: Slope\: of \: S P=\frac{4 a-0}{4 a-a}=\frac{4}{3} }

\mathrm{and\: slope\: of \: S Q=\frac{-6 a-0}{9 a-a}=\frac{-3}{4}}

\mathrm{Since \: slope \: of\: S P \times\: slope of \: S Q=-1}

\mathrm{\therefore \angle P S Q=\frac{\pi}{2} i.e., P Q subtends\: a \, right \: \: angle \: at\: the \: focus\: S}

Hence option 2 is correct.

 

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE