Get Answers to all your Questions

header-bg qa

The number of bijective functions \mathrm{f}:\{1,3,5,7, \ldots, 99\} \rightarrow\{2,4,6,8, \ldots, 100\},such that \mathrm{\mathrm{f}(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \geq f(99)}, is
 

Option: 1

{ }^{50} P_{17}
 


Option: 2

{ }^{50} P_{33}


Option: 3

33 ! \times 17 !


Option: 4

\frac{50 !}{2}


Answers (1)

best_answer

For bijective function

\mathrm{f(3)>f(9)>\ldots>f(99)}

First select 17 images for these 17 inputs \mathrm{^{50}C}_{33}  ways ad divide them in 1 way

Now selelct images for rest of the 33 inputs in 33! ways 

\mathrm{\therefore \text { Total }={ }^{50} \mathrm{C}_{17} \cdot 33 !}\\

                   =\frac{50 !}{17 !}\\

                   =50 P_{33}

Hence correct option is 2

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE