Get Answers to all your Questions

header-bg qa

The number of normals that can be drawn from a point to an ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} is

 

Option: 1

4


Option: 2

3


Option: 3

2


Option: 4

1


Answers (1)

best_answer

The equation of normal at \mathrm{P(a \cos \theta, b \sin \theta)} on

\mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,} is

\mathrm{a x \sec \theta-b y \operatorname{cosec} \theta=a^2-b^2}

Let it be drawn from \mathrm{M\left(x_1, y_1\right)}. The condition is

\mathrm{a x_1 \sec \theta-b y_1 \operatorname{cosec} \theta=a^2-b^2}

Put \mathrm{ \tan \frac{\theta}{2}=t.}

\mathrm{ \Rightarrow \quad \sin \theta=\frac{2 t}{1+t^2} \: and \: \cos \theta=\frac{1-t^2}{1+t^2}}

Condition (1) becomes

\mathrm{ a x_1\left(\frac{1+t^2}{1-t^2}\right)-b y_1 \frac{1+t^2}{2 t}=a^2-b^2 }

\mathrm{ Or \quad b y_1 t^4+2 t^3\left(a x_1+a^2 e^2\right)+2 t\left(a x_1-a^2 e^2\right)-b y_1=0 } ........(2)

Let its roots be \mathrm{ t_1, t_2, t_3, t_4. }

Then, the number of points (like P ) where normals pass through \mathrm{ M\left(x_1, y_1\right) } is four.

Hence option 1 is correct.
 

Posted by

chirag

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE