Get Answers to all your Questions

header-bg qa

The number of points at which \mathrm{g(x)=\frac{1}{1+\frac{2}{f(x)}}} is not differentiable, where \mathrm{f(x)=\frac{1}{1+\frac{1}{x}}} is

Option: 1

1


Option: 2

2


Option: 3

3


Option: 4

4


Answers (1)

best_answer

\mathrm{f(x)=\frac{1}{1+\frac{1}{x}}=\frac{x}{x+1}} is not differentiable at \mathrm{x=0,-1}. Also, \mathrm{g(x)=\frac{1}{1+\frac{2}{f(x)}}=\frac{1}{1+\frac{2(x+1)}{x}}=\frac{x}{3 x+2}} Thus, the point where g(x) is not diiferentiable are \mathrm{x=0,-1}\mathrm{\frac{-2}{3}}.

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE