Get Answers to all your Questions

header-bg qa

The point P(a, b) undergoes the following three transformations successively:
(a) reflection about the line y=x.
(b) translation through 2 units along the positive direction of \mathrm{x}-axis.
(c) rotation through angle \frac{\pi}{4} about the origin in the anti-clockwise direction. If the co-ordinates of the final position of the point P$ are $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right), then the value of 2 a+b is equal to
Option: 1 13
Option: 2 9
Option: 3 5
Option: 4 7

Answers (1)

best_answer

1) Reflection \: \: along \: \: y=x \: \: will \: \: make\: \: the \: \: point\, (b, a)

2) 2 \: \: units\: \: in +x$ direction: $(b+2, a)

3)

Using \: \: Rotation \: \: Theorem

\begin{aligned} & \frac{-\frac{1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i}{b+2+a i}=e^{i \pi / 4} \\ \Rightarrow &-\frac{1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=((b+2)+a i)\left(\frac{1}{\sqrt{2}}+i \cdot \frac{1}{\sqrt{2}}\right) \\ \Rightarrow &-\frac{1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=\frac{b+2-a}{\sqrt{2}}+i\left(\frac{b+2+a}{\sqrt{2}}\right) \end{aligned}

Comparing

b+2-a=-1 \: and \: b+2+a=7

\Rightarrow a=4, b=1

\Rightarrow 2 a+b=9

The correct option is (2)

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE