Get Answers to all your Questions

header-bg qa

The potential clergy of a system of two particles is given by \mathrm{v=-\frac{m}{r^2}+\frac{n}{r^8}}, where \mathrm{r} is distance between the particle and \mathrm{m} and \mathrm{n} are positive constant. If the system is in equilibrium at r=\mathrm{r_0}, then \mathrm{r_0} in terms of \mathrm{m} and \mathrm{n} -

Option: 1

\mathrm{r_0^3=2 \sqrt{\frac{n}{m}}}


Option: 2

\mathrm{r_0^3=2 \frac{n}{m}}


Option: 3

\mathrm{r_0^3= 4\frac{ n}{m}}


Option: 4

\mathrm{r_0^3=8 \frac{n}{m}}


Answers (1)

best_answer

For equilibrium -

                               \mathrm{\left.\frac{d V}{d r}\right|_{r=r_0}=0 }

\mathrm{\frac{d}{d r}\left[-m r^{-2}+n r^{-8}\right]_{r=r_0}=0}

      \mathrm{ {\left[2 m r^{-3}-8 n r^{-9}\right]_{r=r_0}=0}}

                                   \mathrm{2 m r_0^{-3}=8 n r_0^{-9}}

                                         \mathrm{\frac{r_0^{-3}}{r_0^{-9}}=\frac{8 n}{2 m}}

                                    \mathrm{r_0^{-3+9}=\frac{4 n}{m}}

                                           \mathrm{ r_0^6=\frac{4 n}{m}}

                                     \mathrm{ \Rightarrow r_0^3=2 \sqrt{\frac{n}{m}}}

Posted by

Rishabh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE