Get Answers to all your Questions

header-bg qa

The probabilities that a student passes in mathematics, physics and chemistry are \mathrm{ m, p} and \mathrm{ c} respectively. Of these subjects, a student has a \mathrm{ 75 \%}  chance of passing in at least one, a  \mathrm{50 \%}  chance of passing in at least two, and a \mathrm{40 \%} chance of passing in exactly two subjects. Which of the following relations are true?

Option: 1

\mathrm{p+m+c=\frac{19}{20} }


Option: 2

\mathrm{p+m+c=\frac{27}{20}}


Option: 3

\mathrm{p m c=\frac{4}{10} }


Option: 4

\mathrm{p m c=\frac{1}{4}}


Answers (1)

best_answer

Here,  \mathrm{P(M)=m, P(P)=p, P(C)=c}
The probability of passing in at least one subject \mathrm{=1-P(\bar{M} \bar{P} \bar{C)}}
\mathrm{ \therefore \quad \frac{75}{100}=1-(1-m)(1-p)(1-c) }
 or     \mathrm{ \quad \frac{3}{4}=m+p+c-m p-p c-m c+m p c }...................(1)
The probability of passing in at least two subjects
\mathrm{ =P(M P C)+P(M P \bar{C})+P(M \bar{P} C)+P(\bar{M} P C) \\ }
\mathrm{ \therefore \frac{1}{2}=m p c+m p(1-c)+m(1-p) c+(1-m) p c \\ }
\mathrm{ \therefore 2 m p c=m p+m c+p c-\frac{1}{2} }..................................................(2)

The probability of passing in exactly two subjects

 \mathrm{ =P(M P \bar{C})+P(M \bar{P} C)+P(\bar{M} P C) . \\ }
\mathrm{ \therefore \quad \frac{2}{5}=m p(1-c)+m(1-p) c+(1-m) p c=m p+m c+p c-3 m p c}
(2) and (3) \mathrm{ \Rightarrow 2 m p c+\frac{1}{2}=\frac{2}{5}+3 m p c \quad or \quad m p c=\frac{1}{2}-\frac{2}{5}=\frac{1}{10}}

\mathrm{\therefore \quad (2) \Rightarrow \frac{1}{5}=m p+m c+p c-\frac{1}{2} \quad}  or \mathrm{\quad m p+m c+p c=\frac{1}{5}+\frac{1}{2}=\frac{7}{10}.}
\mathrm{\therefore (1) \Rightarrow \frac{3}{4}=m+p+c-\frac{7}{10}+\frac{1}{10}

\mathrm{ \therefore \quad m+p+c=\frac{27}{20}}.

 

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE